2080

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 12, DECEMBER 1989

Unified Solution of Various Dielectric-Loaded
Ridge Waveguides with a Mixed
Spectral-Domain Method

KWONG T. NG, MEMBER, IEEE, AND CHI HOU CHAN, MEMBER, IEEE

Abstract — A mixed spectral-domain method is developed and applied to
analyze various dielectric-loaded ridge waveguides. Magnetic surface cur-
rents at apertures are identified as unknowns in auxiliary structures.
Spectral Green’s functions are formulated with the spectral immittance
approach for these structures. Mixing different spectral domains existing
on the two sides of an aperture in a spectral Galerkin approach then leads
to the characteristic equations required for the dispersion analysis. The
simplicity and numerical efficiency of the conventional spectral-domain
immittance approach, which cannot be applied directly to the present
structures, are maintained. Representative results are obtained to illustrate
the application of the method.

I. INTRODUCTION

ONVENTIONAL ridge waveguide and its variations,

e.g., antipodal ridge waveguide [2] and T-septum
waveguide [3], have found many applications in microwave
and millimeter-wave devices [1]-[6]. The ridges in rectan-
gular waveguides increase the cutoff wavelength and allow
wave propagation with smaller overall guide dimensions
than those required in rectangular waveguides. In addition,
ridge waveguides offer the advantages of large bandwidths,
low characteristic impedances, and the possibility of inte-
grated circuit designs [4].

Since the original ridge waveguide structure was pro-
posed, different variations have been made to increase its
bandwidth, e.g., antipodal ridge waveguide [2] and T-sep-
tum waveguide [3]. Also, dielectric loading has been used
to control its propagation characteristics [7]. In this paper
a mixed spectral-domain technique will be developed for
the analysis of the class of dielectric-loaded ridge wave-
guides shown in Fig. 1, including the dielectric-loaded
antipodal and T-septum wavegnides shown in Fig. 1(d)
and (e). Only the symmetrical double T-septum waveguide
is considered, although the method can be applied to other
general T-septum waveguides with inhomogeneous dielec-
tric slabs as well. These structures have been analyzed
separately before with analytical approximations, mode-
matching techniques, variational techniques, Ritz—Galer-
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Fig. 1. A class of ridge waveguides. (a) Dielectric-loaded single-ridge

waveguide. (b) Dielectric-loaded double-ridge wavegwide. (c) Slotted
dielectric-loaded ndge waveguide (d) Dielectric-loaded antipodal ridge
waveguide. (¢) Dielectric-loaded T-septum waveguide.

kin techniques, and the method of moments [7]-[12]. (To
the best of our knowledge, the antipodal ridge waveguide
has been analyzed before only without dielectric loading.)
Compared to these previous methods, the technique devel-
oped in this paper is more versatile or numerically effi-
cient.

The spectral-domain method, using a generalized immit-
tance approach [13], is popular for the analysis of planar
and quasi-planar structures. It offers simple formulation
and high numerical efficiency. With a proper choice of
basis functions, only a small number of them is required,
leading to a small matrix size. The conventional spectral-
domain immittance approach, however, cannot be applied
directly to analyze the structures shown in Fig. 1. This is
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Fig. 2. Simplified structures after applying symmetry (shown on the
left) and equivalent structures based on the equivalence principle
(shown on the right) for the ridge waveguides shown in Fig 1.
(a) Dielectric-loaded single-ridge and double-ridge waveguide. (b) Slot-
ted dielectric-loaded ridge waveguide. (c) Dielectric-loaded antipodal
ridge waveguide. (d) Dielectric-loaded T-septum waveguide.

Magnetic Wall

because the Fourier transform variable « in x will have
different values for different regions, in order to satisfy the
boundary conditions on the sidewalls, which have different
separations in different regions. As a result, a mixed do-
main approach is developed, one which maintains the
advantages of the spectral-domain immittance method. In
the present approach, magnetic surface currents at aper-
tures are identified as the unknowns in equivalent struc-
tures. A spectral Galerkin method involving different spec-
tral domains is then developed, using the immittance
approach to formulate Green’s functions for these equiva-
lent structures. The method is general and can be formu-
lated to analyze other quasi-planar transmission line struc-
tures consisting of variations in sidewall separations, e.g.,
finlines with pedestals or grooves [14].

II. FORMULATION

A. Mixed Spectral-Domain Method

Because of the symmetry existing in the dielectric-loaded
single-ridge and double-ridge waveguides (Fig. 1(a) and
(b)), only half of each original structure need be consid-
ered, and both of them can be reduced to a structure with
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an electric or magnetic wall inserted at the center. Only the
magnetic wall case will be considered here, as shown in
Fig. 2(a), with the understanding that all the procedures
are similar for the electric wall case. Similar symmetry in
other ridge waveguides allows them to be reduced accord-
ingly, as shown in Fig, 2 with their corresponding equiva-
lent structures. Note that for the double T-septum wave-
guide, only one quarter of the structure need be analyzed
and only modes satisfying the boundary conditions of a
magnetic wall at x = 0 and an electric wall at y = 0 will be
considered. Again, it should be understood that all other
modes can be handled by similar procedures.

To illustrate the formulation, the slotted, dielectric-
loaded ridge waveguide in Fig. 1(c) will be considered first.
The spectral-domain immittance approach can then be
used for the equivalent structures shown in Fig. 2(b).
Following the equivalence principle [15], the two apertures
in the ridge waveguide are replaced by perfectly conduct-
ing planes, and appropriate magnetic surface currents are
used to restore the fields. The total transverse (to y)
magnetic field at y =d; is radiated by magnetic surface
current M, in the presence of the conducting plane and
the environment for y > d,. On the other hand, the trans-
verse magnetic fields at y =d; and y =d; are radiated
by magnetic surface currents — M; and M, in the pres-
ence of the shorted apertures. Finally, the magnetic field at
y=d; 1is due to — M, radiating in the presence of the
conducting plane and the environment for y <d,. One can
use the conventional spectral-domain immittance approach
to easily derive the spectral dyadic Green’s functions for
the equivalent structures. Enforcement of continuity of the
transverse magnetic fields across the apertures allows one
to relate M; and M,.

In the following, the spectral dyadic Green’s functions
and transverse magnetic fields will be given. Quantities
marked with a tilde are Fourier transforms of correspond-
ing quantities without the tilde. The Fourier transform is
defined as in [16]). The discrete transform variables are
pw/a, pw/b, and pw/c over the regions y > d,, d, <y <
d,, and y < d,, respectively. Three kinds of spectral dyadic
Green’s functions, as illustrated in Fig. 3, are required.
Their detailed expressicns are given in the Appendix. In
using these Green’s functions, the variables d and / in Fig.
3 need to be set at values appropriate for the slotted,
dielectric-loaded ridge waveguide shown in Fig. 2(b), as
given in the following field expressions. The transverse
magnetic fields at y=d] due to M,;, with a shorted

aperture, is
1 1 ~
Gxx G xz M 1x
~1 A1 YRR
sz 7y M, 1z

H€|
H, |,

On the other hand, the magnetic fields at y=d; due to
— M, and M, are given by

d=p-s. (1)

ﬁ x _ G}x G}: M 1x + G~x2x G~x22 M 2x
ﬁz dy G?r | GNzlz Mlz G~22x G:'zz M2z ’
d = dl - dz. (2)
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Fig 3. The three different Green’s functions for field calculations.

Further, the magnetic fields at y =dJ
M, are given by

due to — M, and

Hx _ Gfx G~x22 Mlx + G?cx G}z M2x
ﬁ z |df ézzx Gh‘zzz M 1z G~zlx G‘:}z M 2z ’
d=d,—d,. (3)

Finally, the magnetic fields at y=d; due to — M, are
given by

H| _ |G,
ﬁz d5 G?x

After enforcing the continuity of the transverse magnetic
field across the apertures at y =d; and d, in the spatial
domain, one obtains

Hx _ Hx
H: di - Hz dr
Hz d3 Hz d2“

Note that (5) and (6) are not valid in the transform domain
when the different quantities are replaced by their Fourier
transforms, because different transform variables exist on
the two sides of the apertures.

The spectral Galerkin method is then applied by ex-
panding the unknown magnetic surface currents M; and

53
ze
G~3

M2x
MZZ

}, d=d,, 1=1. (4)

(5)

(6)
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M, in (1)-(4) with sets of known basis functions weighed
with unknown coefficients. To determine the unknown
weighting coefficients, the transverse magnetic fields at
y=d, and y=d, are tested, respectively, with the same
basis functions for M; and M,. As mentioned in [14],
testing in the spatial domain for (5) and (6) corresponds to
evaluating the integral 2%, w(x)h(x)dx, where w(x) is
a basis function, A(x) is a field quantity, and L =a for
y=df,bfor y=d; and y=dj, and ¢ for y=d; . Note
that the integration limits are different for the two sides of
(5) and (6), which is possible because the basis functions
for M, and M, are zero outside their corresponding aper-
tures. Applying the Parseval theorem then leads to the
replacement of each integral by an inner product defined
in the transform domain as the summation of Wwh /L over
a distance transform variable. Then, using (1)-(4), one
obtains

~ ~.

1/61 Mleilex Mle’}lez CMlx
Mlzézllex Mlzézlelz a, CMlZ
- _1/b Mle}bec Mle}lez I:CMlxj’
L Mlzézllex MI:G?:Mlz a, CML’
+l/b MlxéxzxMZx MleNxzzMZ,: CMZx
L MlzGNZZxMZx M12G~222M22 ey, CM2~
(7)
—]/b MZxG:‘czlex MZxé)czlez-‘ CMlx
_M2ZG~ZZXM1.X M’_’:G'VZZ:MIZJ“,) CML’
+1/b M2XG~_$XM2X MZXG’;:MZ: CM2x
_Mzzézlxsz Mzzdzlezz a, Chrz:
- _l/C szégxsz MZ}CG‘?ZM2Z CMZx
M27G~23XM2X MZZG?:MZZ a, CMZZ

(8)

where C,, and C,,, are the weighting coefficients for M,
and M,, the G’s are the spectral Green’s functions, and
o,, a, and «, represent the discrete Fourier transform
variables in regions with sidewall separations a, b, and c,
respectively. Note that the summations over all spectral
variables and basis functions are omitted in (7) and (8) for
clarity. The propagation constant k, is given by the eigen-
values of the combined matrix equations (7) and (8), which
can then be solved for the unknown weighting coefficients.
The fields and impedances can then be obtained. It should
be noted that this method is different from the modified
mode-matching technique presented in [17], although they
are related and allow one to treat similar waveguide struc-
tures.

The other structures shown in Fig. 2 can be treated with
a similar procedure. The equivalence principle is invoked
to replace apertures by perfectly conducting planes and
restore the fields with unknown magnetic surface currents
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Fig. 4. Normalized propagation constant versus frequency for dielec-
tric-loaded single-ridge waveguides.

located at the two sides of each aperture. Transverse
magnetic fields at each aperture can then be expressed in
terms of these magnetic currents and the spectral dyadic
Green’s functions shown in Fig. 3. Enforcing the continu-
ity of the transverse magnetic fields at each aperture will
give equations similar to (5) and (6). Then, applying the
spectral Galerkin method outlined above will lead to ma-
trix equations similar to (7) and (8).

B. Choice of Basis Functions

For the structures shown in Fig. 2(a) and (b), the basis
functions provided in [18] will be used. These basis func-
- tions incorporate a singularity behavior of x /2 at both
edges of an aperture for the z-components of the magnetic
currents. As discussed in [14], they are adequate for ap-
proximating the currents on an aperture with two edges.
As for the antipodal ridge waveguide structure shown in
Fig. 2(c), the aperture current only has singularity behavior
for M, at one of the edges, namely, the edge of the ridge.
Further, M, is zero at the original waveguide sidewalls.
Hence, new types of current basis functions need to be
used. For the apertures located at —d; and —d,, the
basis functions for M, and M, are respectively given by

&(x) =sin(k,x)/Vb? — x?,

k,=im/b, i=1,2,- (9)
n,(x) =cos(k,x)/Vb? = x?,
k, =in/b, i=0,1,2, (10)

For the apertures located at d; and d,, the basis functions
for M, and M, are similar to those given in (9) and (10),
but with x replaced by (x — %) in the numerator and
(x — a) in the denominator, and % = (a — b). The Fourier
transforms of these basis functions were found to be
complicated functions of zero-order Bessel functions of the
first kind and zero-order Struve functions. As for the
T-septum waveguide, basis functions similar to those spec-
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Fig. 6. Normalized propagation constant versus dielectric slab thick-
ness for a slotted dielectric-loaded ridge waveguide.

ified in (9) and (10) are used. Lastly it should be noted that
sine and cosine transforms need to be used appropriately
to satisfy the boundary conditions for the antipodal and
T-septum waveguides.

1L

As an illustration of the versatility and validity of the
method, numerical results on the normalized propagation
constant for the dominant mode are obtained in Figs. 4-7,
respectively, for a single-ridge waveguide, a double-ridge
waveguide, a slotted ridge waveguide, and an antipodal
ridge waveguide, all being dielectric-loaded. Three basis
functions for each component of the magnetic surface
current are used. The Fourier transform variables are
a,=nw/a, a,=nw/b, and a,.= nw/c for the regions with
sidewall separations a, b, and ¢ in Fig. 2. As one can see
in all the results, the propagation characteristic can be

RESULTS
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sus sidewall separation for the first TE mode for dielectric-loaded
T-septum waveguides

greatly affected by dielectric loading. As shown in Fig. 4,
the frequency dependence of k, is about the same for the
two dielectric slabs considered (e, =1.0 and 2.62). Also, in
Fig. 5, one can observe the cutoff effect, as k, approaches
zero, due to a decrease in cutoff wavelength when the
dielectric slab thickness ¢ is decreased. Such a decrease in
cutoff wavelength can also be seen in Fig. 6 when the
dielectric slab thickness is decreased. In addition, the re-
sults for the antipodal ridge waveguide in Fig. 7 demon-
strate a fairly large dependence on the dielectric constant
of the slab. Such a dependence can also be seen in the
results shown in Fig. 8 on the normalized cutoff wave-
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length for the first TE mode for a T-septum waveguide. In
this case, a,=nm/a, a,=nn/b, and a,=(n+1/2)7/c.
If an electric wall is placed at x =0, then &, should be
changed to nw/c. In all cases, comparisons with previous
numerical and experimental results are excellent.

1V. CONCLUSIONS

A simple and numerically efficient mixed spectral-
domain method has been presented for the analysis of
generalized dielectric-loaded ridge waveguides. The formu-
lation allows one to maintain the advantages of the
spectral-domain immittance approach in more complicated
structures, which requires mixing two different spectral
domains on the two sides of an aperture. Due to the nature
of the approach, dielectric slabs can be incorporated easily.
Representative results for different structures compare well
with those obtained previously with different methods.

APPENDIX

The spectral dyadic Green’s functions shown in Fig. 3
are given by

(61 GL] [ YUNR+YIN? (YM-YNN,
i é}x G”le ) L(ylh _ Yle)NxNz Y”’NZZ + YleNxz
(A1)
_G~x2x G~x221 _ i YZth2+Y2e]V22 (YZh_YZe)NxNZ
G2 GX|  |[(Y*=Y*)NN, YYN2+Y*N?
(A2)
G G| [ YINZEYRN?  (YV-YF)NN,
\_G?x (5232 L(Y3h —YSe)NxNZ Y3hN22+ YseNxz
(A3)
Yo =Y, ™ Fcoth (v,d) (A4)
y2eh = YT sinh (n,d) (A5)

onae TTE Y™ Egoth [,(d — )] O

Y3e,h — .
Y Y™ Teoth[v,(d - )] + ™M TEQ

(A6)

Here Q = coth(y,/) and tanh(y,/) for an electric and a
magnetic wall placed at x =.0 respectively. In addition,

Y,
Y= (A7)
Jwlo
—~ jee, €
Y™ = — - (A8)
v= (2 + k2, k3)" (A9)
o
N =—— (A10)
o+ k2
k;’
NZ = ‘:2“;2— (All)

z
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where a is the Fourier transform variable and k() is the
propagation constant in the z direction.
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