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Unified Solution of Various Dielectric-Loaded
Ridge Waveguides with a Mixed

Spectral-Domain Method

KWONG T. NG, MEMBER, IEEE, AND CHI HOU CHAN, MEMBER, IEEE

Abstract — A mixed spectral-domain method is developed and applied to

analyze varions dielectric-loaded ridge wavegnides. Magnetic surface cnr-

rents at apertures are identified as nnknowns iu auxifiary structures.

Spectral Green’s functions are formulated with the spectral immittance

approach for these structures. Mixing different spectral domains existing

on the two sides of an aperture in a spectral Galerkin approach then leads

to the characteristic equations required for the dkpersion analysis. The

simplicity and numerical efficiency of the conventional spectral-domain

immittance approach, which cannot be applied directly to the present

strictures, are maintained. Representative results are obtained to illustrate

the application of the method.

I. INTRODUCTION

c ONVENTIONAL ridge waveguide and its variations,

e.g., antipodal ridge waveguide [2] and T-septum

waveguide [3], have found many applications in microwave

and millimeter-wave devices [1]–[6]. The ridges in rectan-

gular waveguides increase the cutoff wavelength and allow

wave propagation with smaller overall guide dimensions

than those required in rectangular waveguides. In addition,

ridge waveguides offer the advantages of large bandwidths,

low characteristic impedances, and the possibility of inte-

grated circuit designs [4].

Since the original ridge waveguide structure was pro-

posed, different variations have been made to increase its

bandwidth, e.g., antipodal ridge waveguide [2] and T-sep-

tum waveguide [3]. Also, dielectric loading has been used

to control its propagation characteristics [7]. In this paper

a mixed spectral-domain technique will be developed for

the analysis of the class of dielectric-loaded ridge wave-

guides shown in Fig. 1, including the dielectric-loaded

antipodal and T-septum waveguides shown in Fig. l(d)

and (e). Only the symmetrical double T-septum waveguide

is considered, although the method can be applied to other

general T-septum waveguides with inhomogeneous dielec-
tric slabs as well. These structures have been analyzed

separately before with analytical approximations, mode-

matching techniques, variational techniques, Ritz-Galer-
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Fig. 1. A class of ridge waveguides. (a) Dielectric-loaded single-ridge
waveguide. (b) Dielectric-loaded double-ridge wavegulde. (c) Slotted

dielectric-loaded ridge waveguide (d) Dielectric-loaded antipodal ridge

wavegnide. (e) Dielectric-loaded T-septum waveguide.

kin techniques, and the method of moments [7]-[12]. (To

the best of our knowledge, the antipodal ridge waveguide

has been analyzed before only without dielectric loading.)

Compared to these previous methods, the technique devel-

oped in this paper is more versatile or numerically effi-

cient.

The spectral-domain method, using a generalized immit-

tance approach [13], is popular for the analysis of planar

and quasi-planar structures. It offers simple formulation

and high numerical efficiency. With a proper choice of

basis functions, only a small number of them is required,

leading to a small matrix size. The conventional spectral-

domain immittance approach, however, cannot be applied

directly to analyze the structures shown in Fig. 1. This is
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Fig. 2. Simplified structures after applying symmetry (shown on the
left) and equivalent strictures based on the equivalence principle
(shown on the right) for the ridge waveguides shown in Fig. 1.
(a) Dielectric-loaded single-ridge and double-ridge waveguide. (b) Slot-

ted dielectric-loaded ridge waveguide. (c) Dielectric-loaded antipodat
ridge waveguide. (d) Dielectric-loaded T-septum wavegnide.

because the Fourier transform variable a in x will have

different values for different regions, in order to satisfy the

boundary conditions on the sidewalls, which have different

separations in different regions. As a result, a mixed do-

main approach is developed, one which maintains the

advantages of the spectral-domain immittance method. In

the present approach, magnetic surface currents at aper-

tures are identified as the unknowns in equivalent struc-

tures. A spectral Galerkin method involving different spec-

tral domains is then developed, using tlhe immittance

approach to formulate Green’s functions for these equiva-

lent structures. The method is general and can be formu-

lated to analyze other quasi-planar transmission line struc-

tures consisting of variations in sidewall separations, e.g.,

finlines with pedestals or grooves [14].

II. FORMULATION

A. Mixed Spectral-Domain Method

Because of the symmetry existing in the dielectric-loaded

single-ridge and double-ridge waveguides (Fig. l(a) and

(b)), only half of each original structure need be consid-

ered, and both of them can be reduced to a structure with

an electric or magnetic wall inserted at the center. Only the

magnetic wall case wi 11 be considered here, as shown in

Fig. 2(a), with the understanding that all the procedures

are similar for the electric wall case. Similar symmetry in

other ridge waveguides allows them to be reduced accord-

ingly, as shown in Fig,, 2 with their corresponding equiva-

lent structures. Note that for the double T-septum wave-

guide, only one quarter of the structure need be analyzed

and only modes satisfying the boundary conditions of a

magnetic wall at x = O and an electric wall at y = O will be

considered. Again, it should be understood that all other

modes can be handled by similar procedures.

To illustrate the formulation, the slotted, dielectric-

Ioaded ridge waveguide in Fig. l(c) will be considered first.

The spectral-domain immittance approach can then be

used for the equivalent structures shown in Fig. 2(b).

Following the equivalence principle [15], the two apertures

in the ridge waveguide are replaced by perfectly conduct-

ing planes, and appropriate magnetic surface currents are

used to restore the fields. The total transverse (to y)

magnetic field at y = d: is radiated by magnetic surface

current Ml in the presence of the conducting plane and

the environment for y:> dl. On the other hand, the trans-

verse magnetic fields at y = d; and y = dj are radiated

by magnetic surface cw-rents – &fl and ikC2 in the pres-

ence of the shorted apertures. Finally, the magnetic field at

y = d; is due to – M2 radiating in the presence of the

conducting plane and the environment for y < dz. One can

use the conventional spectral-domain immittance approalch

to easily derive the spectral dyadic Green’s functions for

the equivalent structures. Enforcement of continuity of the

transverse magnetic fields across the apertures allows one

to relate Ml and M2.
In the following, the spectral dyadic Green’s functions

and transverse magnetic fields will be given. Quantities

marked with a tilde are Fourier transforms of correspond-

ing quantities without the tilde. The Fourier transform is

defined as in [16]. The discrete transform variables awe

p~/a, p~/b, and pT/c over the regions y > dl, dz < Y <

dl, and y < dz, respectively. Three kinds of spectral dyadic

Green’s functions, as illustrated in Fig. 3, are required.

Their detailed expressions are given in the Appendix. In

using these Green’s functions, the variables d and I in Fig.

3 need to be set at values appropriate for the slotted,

dielectric-loaded ridge waveguide shown in Fig. 2(b), as

given in the following field expressions. The transverse

magnetic fields at y = d: due to Ml, with a shorted

aperture, is

[3:=1%‘%1[21d=p–s. (“1)

On the other hand, the magnetic fields at y = d; due to

– Ml and iklz are given by

[21.,=-[%::1[21+[%ala
d=dl- d,. (2)
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Fig 3. The three different Green’s functions for field calculations.

Further, the magnetic fields at y = d; due to – Ml and

ikfz are given by

d=dl–dz. (3)

Finally, the magnetic fields at y = d; due to – IW2 are

given by

[~ld,=-[::Il[fl>d=dz, l=t. (4)

After enforcing the continuity of the transverse magnetic

field across the apertures at y = dl and dz in the spatial

domain, one obtains

(5)

(6)

Note that (5) and (6) are not valid in the transform domain

when the different quantities are replaced by their Fourier

transforms, because different transform variables exist on

the two sides of the apertures.
The spectral Galerkin method is then applied by ex-

panding the unknown magnetic surface currents Ml and

iklz in (l)-(4) with sets of known basis functions weighed

with unknown coefficients. To determine the tmknown

weighting coefficients, the transverse magnetic fields at

Y = dl and y = dz are tested, respectively, with the same
basis functions for Ml and AZz. As mentioned in [14],

testing in the spatial domain for (5) and (6) corresponds to

evaluating the integral J ~~,z w (x ) h ( x ) dx, where w (x ) is

a basis function, h(x) is a field quantity, and L = a for

Y=d~, bfory=d~ and y=d~, andcfory=d~. Note
that the integration limits are different for the two sides of

(5) and (6), which is possible because the basis functions

for MI and Tfz are zero outside their corresponding aper-

tures. Applying the Parseval theorem then leads to the

replacement of each integral by an inner product defined

in the transform domain as the summation of tik /L over

a distance transform variable. Then, using (l)–(4), one

obtains

(8)

where CMI and CM2 are the weighting coefficients for Ml
and M2, the ~‘s are the spectral Green’s functions, and

a a~, and aC represent the discrete Fourier transform

v~~iables in regions with sidewall separations a, b, and c,

respectively. Note that the summations over all spectral

variables and basis functions are omitted in (7) and (8) for
clarity. The propagation constant k, is given by the eigen-

values of the combined matrix equations (7) and (8), which

can then be solved for the unknown weighting coefficients.

The fields and impedances can then be obtained. It should

be noted that this method is different from the modified

mode-matching technique presented in [17], although they

are related and allow one to treat similar waveguide struc-

tures.

The other structures shown in Fig. 2 can be treated with

a similar procedure. The equivalence principle is invoked

to replace apertures by perfectly conducting planes and

restore the fields with unknown magnetic surface currents
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Fig. 4. Normalized propagation constant versus frequency for dielec-

tric-loaded single-ridge waveguides.

located at the two sides of each aperture. Transverse

magnetic fields at each aperture can then be expressed in

terms of these magnetic currents and the spectral dyadic

Green’s functions shown in Fig. 3. Enforcing thecontinu-

ity of the transverse magnetic fields at each aperture will

give equations similar to (5) and (6). Then, applying the

spectral Galerkin method outlined above. will lead to ma-

trix equations similar to (7) and (8).

B. Choice of Basis Functions

For the structures shown in Fig. 2(a) and (b), the basis

functions provided in [18] will be used. These basis func-

tions incorporate a singularity behavior of x-112 at both

edges of an aperture for the z-components of the magnetic

currents. As discussed in [14], they are aclequate for ap-

proximating the currents on an aperture with two edges.

As for the antipodal ridge waveguide structure shown in

Fig. 2(c), the aperture current only has singularity behavior

for M= at one of the edges, namely, the edge of the ridge.

Further, MX is zero at the original waveguide sidewalls.

Hence, new types of current basis functions need to be

used. For the apertures located at – d~ and – dd, the

basis functions for MX and M= are respectively given by

J,(X) = sin (k,x)/J=”,

k,=i~/b, i=l,2,.. ” (9)

qi(x) =cos(ktx)/m7,

k, =ir/b, i=0,11,2, . . . . (10)

For the apertures located at dl and dz, the basis functions

for MX and M= are similar to those given in (9) and (10),

but with x replaced by (x – h ) in the numerator and

(x – a) in the denominator, and h = (a – b). The Fourier

transforms of these basis functions were found to be

complicated functions of zero-order Bessel functions of the

first kind and zero-order Struve functions. As for the

T-septum waveguide, basis functions similar to those spec-
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ified in (9) and (10) are used. Lastly it should be noted that

sine and cosine transforms need to be used appropriately

to satisfy the boundary conditions for the antipodal and

T-septum waveguides.

111. RESULTS

As an illustration of the versatility and validity of the

method, numerical results on the normalized propagation

constant for the dominant mode are obtained in Figs. 4-7,

respectively, for a single-ridge waveguide, a dor.tble-ridge

waveguide, a slotted ridge waveguide, and an antipodhl
ridge waveguide, all being dielectric-loaded. Three basis

functions for each connponent of the magnetic surface

current are used. The Fourier transform variables are

aa = nw/a, ab = nw/b, and a== nv/c for the regions with

sidewall separations a, b, and c in Fig. 2. As one can see

in all the results, the lpropagation characteristic can be
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sus sidewall separation for the first TE mode for dielectric-loaded

T-septum waveguides

greatly affected by dielectric loading. As shown in Fig. 4,

the frequency dependence of k= is about the same for the

two dielectric slabs considered (c, =1.0 and 2.62). Also, in

Fig. 5,0necan observe the cutoff effect, ask= approaches

zero, due to a decrease in cutoff wavelength when the

dielectric slab thickness t is decreased. Such a decrease in

cutoff wavelength can also be seen in Fig. 6 when the

dielectric slab thickness is decreased. In addition, the re-

sults for the antipodal ridge waveguide in Fig. 7 demon-

strate a fairly large dependence on the dielectric constant

of the slab. Such a dependence can also be seen in the

results shown in Fig. 8 on the normalized cutoff wave-

length for the first TE mode for a T-septum waveguide. In

this case, a. = nr/a, ~b = n~/b, and % = (n + l/z)~/c”

If an electric wall is placed at x = O, then aC should be

changed to n n/c. In all cases, comparisons with previous

numerical and experimental results are excellent.

IV. CONCLUSIONS

A simple and numerically efficient mixed spectral-

domain method has been presented for the analysis of

generalized dielectric-loaded ridge waveguides. The formu-

lation allows one to maintain the advantages of the

spectral-domain immittance approach in more complicated

structures, which requires mixing two different spectral

domains on the two sides of an aperture. Due to the nature

of the approach, dielectric slabs can be incorporated easily.

Representative results for different structures compare well

with those obtained previously with different methods.

APPENDIX

The spectral dyadic Green’s functions shown in Fig. 3

are given by

(A4)yle>~ = y~”,Ecoth (yId )

~z~,h = y~M,TE/sinh (yld ) (A5)

y:km + y~M,TEcoth [yl(d – z)] Q ~A6)
y3e,h = ylTM,TE

Y~M’TEcoth [yl( d – ~)] + Y:”’TEQ “

Here Q = coth(yzl) and tanh(yzl) for an electric and a

magnetic wall placed at x =.0 respectively. In addition,

yTE = ‘z (A7)
jwpo

(A8)

-( 2,
1/2

y, – a2+ k:–c,,ko (A9)

‘x=&
““F%

(A1O)

(All)
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where a is the Fourier transform variable and k=(~) is the

propagation constant in the z direction.
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